## FACULTY OF MANAGEMENT

## M.B.A. (CBCS) III- Semester (Very Old) Examination, August 2023

Subject: Operations Research
Paper- MB-303
Time: 3 Hours
Max. Marks: $\mathbf{8 0}$
.PART - A
Note: Answer all the questions.

1. Dynamic programming
2. Sensitivity analysis
3. Restricted Assignment problem
4. Time-Cost Trade off
5. Applications of simulation

Note: Answer all the questions.
(5 x 12 = 60 Marks)
6. (a) Four products are processed successively on two machines. The machining times in hours per unit of each product are given below:

| Machine | Time per Unit(hours) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | oduct1 | oduct2 | oduct3 | Product4 |
| I | 2 | 3 | 4 | 2 |
| II | 3 | 2 | 1 | 2 |

The total cost of producing one unit of each product is based directly on machine time. Cost per hour for machines I and II are Rs. 10 and Rs. 5 respectively. The total hours available for machines 1 and II are 500 and 380 . If the sale price per unit of products 1, 2, 3 and 4 are Rs.65, 70, 55 and 45 respectively. Formulate as LPP to maximize total net profit.
(OR)
(b) Solve the following LPP using graphical method.

$$
\begin{aligned}
& \text { Maximize } \begin{array}{l}
Z=2 x_{1}+3 x_{2} \\
\text { Subject to constraints: } \\
x_{1}-2 x_{2} \leq 0 \\
2 x_{1}-x_{2} \geq 0 \\
x_{1}-x_{2} \leq 0
\end{array} \\
& \text { Where } x_{1}, x_{2} \geq 0
\end{aligned}
$$

7. (a) Solve the following LPP.

Maximize
$Z=x_{1}+2 x_{2}+3 x_{3}$
Subject to constraints: $x_{1}-x_{2}+x_{3} \geq 4$
$x_{1}+x_{2}+2 x_{3} \leq 8$
$x_{1}-x_{2} \geq 0$
Where $x_{1}, x_{2}, x_{3} \geq 0$
(OR)
(b) Differentiate between Primal versus Dual with suitable examples.
8. (a) Obtain the optimum solution to the following transportation problem to minimize the total transportation cost. Find IBFS by Vogel's approximation method.

|  |  | Destination |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D1 | D2 | p3 | J4 | Supply |
| Origin | 01 | 42 | 48 | 38 | 37 | 16 |
|  | 02 | 40 | 49 | 52 | 51 | 15 |
|  | 03 | 39 | 38 | 40 | 43 | 19 |
| Demand |  | 8 | 9 | 11 | 16 |  |

(b) A travelling sales man has to visit 5 cities. The distance between the cities is given in the matrix. Determine the optimum route to reduce the distance travelled.

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | - | 0 | 15 | 15 | 0 |
|  | 0 | - | 9 | 14 | 1 |
|  | 0 | 1 | - | 12 | 2 |
|  | 4 | 0 | 14 | - | 5 |
|  | 2 | 0 | 17 | 19 | - |

9. (a) Following data refer to a project:

| etivity | Immediate <br> predecessor | ptimistic time <br> (Hrs) | Most Likely <br> time(Hrs) | Pessimistic <br> time(Hrs) |
| :---: | :---: | :---: | :---: | :---: |
| A | - | 4 | 6 | 8 |
| B | - | 1 | 4.5 | 5 |
| C | A | 3 | 3 | 3 |
| D | A | 4 | 5 | 6 |
| E | A | 0.5 | 1 | 1.5 |
| F | B,C | 3 | 4 | 5 |
| G | B,C | 1 | 1.5 | 5 |
| H | E,F | 5 | 6 | 7 |
| I | E,F | 2 | 5 | 8 |
| J | D,H | 2.5 | 2.75 | 4.5 |
| K | G,I | 3 | 5 | 7 |

(i) Draw the network diagram
(ii) Calculate the critical path
(iii) Determine the probability of completing the project in 24 hours.
(OR)
(b) Table below gives the time and cost data with respect to normal and crash periods of a project.

| :tivity | Immediate <br> predecessor | rrmal time <br> (days) | ash <br> time(days) | rmal <br> cost(Rs) | ash <br> cost(Rs) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | - | 20 | 19 | 8000 | 10000 |
| B | - | 15 | 14 | 16000 | 19000 |
| C | A | 22 | 20 | 13000 | 14000 |
| D | A | 17 | 15 | 7500 | 9000 |
| E | B | 19 | 18 | 4000 | 5000 |
| F | C | 28 | 27 | 3000 | 4000 |
| G | D,E | 25 | 24 | 12000 | 13000 |

10. (a) Use dominance rule to find the optimum strategies for both the players.

|  |  | PLAYER |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | B1 | B2 | B3 | B4 | B5 | B6 |
| PLAYER | A1 | 4 | 2 | 0 | 2 | 1 | 1 |  |  |  |  |  |  |  |
|  | A2 | 4 | 3 | 1 | 3 | 2 | 2 |  |  |  |  |  |  |  |
|  | A3 | 4 | 3 | 7 | -5 | 1 | 2 |  |  |  |  |  |  |  |
|  | A4 | 4 | 3 | 4 | -1 | 2 | 2 |  |  |  |  |  |  |  |
|  | A5 | 4 | 3 | 3 | -2 | 2 | 2 |  |  |  |  |  |  |  |

(OR)
(b) In a hair dress saloon, with one barber, the customer arrived follows Poisson distribution at an average rate of one in every 45 minutes. The service time is exponentially distributed with a mean of 30 minutes. Find
(i) Average number of customers in saloon
(ii) Average waiting time of customer before service
(iii) Average idle time of barber

